

LIGHT

PAR Quantum Sensor

- Measures
 Photosynthetically Active
 Radiation
- Counts quanta of photons in µmol m² s¹
- Ideal or square PAR spectrum response
- For plant and crop research
- Commercial horticulture applications
- Suitable for natural and artificial light sources

Calibrated to National Standards

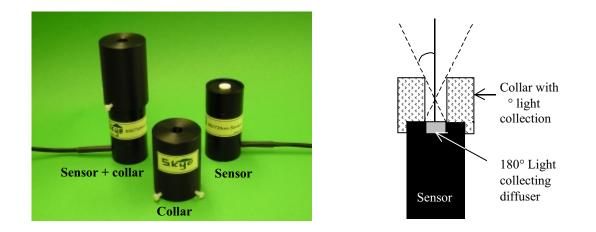
Skye Instruments have been specialising in light and radiation sensors since 1983. All are designed, manufactured and calibrated to the highest standards. Each is supplied with a Calibration Certificate traceable to the UK's National Physical Laboratory (NPL).

There are three PAR sensors in the range, PAR Quantum, PAR Special and PAR Energy models. All measure the Photosynthetically Active Radiation between 400-700 nm, the part of the solar spectrum used by plants for

photosynthesis and sugar production.

The most popular is the PAR Quantum sensor which is used to measure photon irradiance, or quantity of PAR light. It is calibrated in units of mmol m⁻² s⁻¹ (number or quanta of photons).

Sensors are suitable for use in natural solar radiation or any lamp or light source. Each is fully waterproof and guaranteed submersible to 4m depth. Indoor versions are also available, please ask for details of sensors for environmental control.


As with all Skye sensors, the PAR Quantum sensor has been quoted in many scientific references, please ask for a list of publications. They are compatible with Skye Display Meters, SpectroSense meters and DataHog loggers. A choice of outputs are also available to suit most dataloggers and controllers.

ions Weight	Construction	Cable	Sensor	Detector	Filters	Sensitivity -current (1)	Sensitivity -voltage	Working range (2)
4mm 130g. (with 3m cable)	Material Dupont 'Delrin' fully sealed to IP68		Cosine orrected head	photocell. Low fatigue	Optical Glass	2μΑ/100 μmol m ⁻² s ⁻¹	1mV/100 μmol m ⁻² s ⁻¹	
rity Absolute r calibration	Cosine error (4)	Azimuth Te	emperature coefficient	characteristics Longterm stability (6)	Response time (7)	Internal resistance	Temperature range	e Humidity range
error (3)	(''				- voltage output	- voltage output	lango	.ago
% typ. <3% 5% max.	3%	<1% +	0.1%/°C	<u>+</u> 2%	10ns	c.350 ohms	-35 to +75°C	0-100% RH
NOTES ON SI	PECIFICAT	IIONS						
Current output varies fro	om sensor to se	ensor Fach individu	ual unit will ha	ave a slightly diffe	erent output. A	calibration certifi	cate is supplied	with each sensor
All Skye sensors will w					·			
Main source of this erro	or is uncertainty	y of calibration of R	Reference La	amp. Skye calibra	ation standard	s are directly tra	ceable to N.P.L	. standard
references. Cosine error to 80° is ty	ypically 5% ma	x. Figures shown a	are for norma	al use sources. e	e.g., sun plus s	ky, diffuse sun.	growth chambe	rs, etc.
Measured at 45° eleval		g ee chown b				,,		.,
Maximum change in or		tion check recomn	nended at le	ast every two ye	ears. Experience	e has shown that	at changes are	typically much
ess than figures quote Fimes are generally les		re quoted which is	s in nanosec	onds. They may	be slightly inc	reased if long le	ads are fitted o	r those of a
higher capacity cable	se anan are ngu				se enginiy me	in the second		
5								
	GRAPH							
	SRÁPH							
	FRAPH				ENSOR	SKP 215		
	GRAPH	F	PAR QU	ANTUM S	ENSOR	SKP 215		
	ƏRAPH	F 100 ⊤	PAR QU	ANTUM S	ENSOR	SKP 215		
	e to	100	PARQU	ANTUM S	ENSOR	SKP 215		
	ţ.	$ \begin{array}{c} 100 \\ 100 \\ 80 \\ 100 \\$					∃	
	% response to	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PAR QU		50 6		≓ ′50	
	% response to	$ \begin{array}{c} 100 \\ 100 \\ 80 \\ 100 \\$		50 55	50 6		≓ ′50	
	% response to	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		50 55	50 6	50 7		
ORDERIN	% response to	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	50 55 nanon	50 6	50 7 Skye		nents Ltd porise Park
ORDERIN	% response to	100 - 80 - 80 - 100 - 20 - 350 RMATION	45	50 55 nanon	50 6	50 7 Skye 21,	Instrum	prise Park Wells
ORDERIN Sensor SKP 215 Accessories SKM 221	% response to	100 - 80 - 80 - 90 - 20 - 350 RMATION PAR 'Quantu Levelling un	45 um' sens	50 55 nanon sor	50 6	50 7 Skye 21, 1	Instrum Ddole Enterp Landrindod	prise Park Wells 6DF
ORDERIN Sensor SKP 215 Accessories	% response to	100 - 80 - 80 - 100 - 20 - 0 - 350 RMATION	45 um' sens	50 55 nanon sor	50 6	50 7 Skye 21, 1	Ddole Enterp Landrindod Powys LD1 United King	orise Park I Wells 6DF gdom
ORDERIN Sensor SKP 215 Accessories SKM 221	ot estoonse to	100 - 80 - 80 - 90 - 20 - 350 RMATION PAR 'Quantu Levelling un	45 um' sens	50 55 nanon sor	50 6	50 7 Skye 21, 1 TEL	Ddole Enterp Landrindod Powys LD1 United King +44 (0)15	prise Park Wells 6DF
ORDERIN Sensor SKP 215 Accessories SKM 221 SKM 226	ot estoonse to	100 80 60 100 20 0 350 RMATION PAR 'Quantu Levelling un Long arm po Display met 4 channel S	45 um' sens it ole/wall r	50 55 nanon sor	50 6 netres	50 7 Skye 21, L TEL FAX EMAIL sk	Instrum Ddole Enterp Iandrindod Powys LD1 United King +44 (0)15 +44 (0)15	orise Park I Wells 6DF gdom 97 824811
ORDERIN Sensor SKP 215 Accessories SKM 221 SKM 226 Meters and do SKP 200	ot estoonse to	100 80 60 40 20 0 350 RMATION PAR 'Quantu Levelling un Long arm po	45 um' sens it ble/wall r er pectroSe pectroSe	50 55 nanon sor nount	50 6 netres	50 7 Skye 21, L TEL FAX EMAIL sk	Instrum Ddole Enterp Iandrindod Powys LD1 United King +44 (0)15 +44 (0)15	orise Park I Wells 6DF gdom 97 824811 97 824812 instruments.com

NARROW ANGLE COLLAR FOR REFLECTED PAR MEASUREMENTS

Skye's standard light sensors have a cosine correcting diffuser head which allows light to enter the sensor from 180° above it according to Lambert's Cosine Law. This type of sensor is ideal for measuring incident solar radiation, as it always measures from the whole area of the sky regardless of sun position.

This 180° wide acceptance angle is not suitable for reflectance measurements and so Skye offers an adapter collar which collimates the incoming light to a narrow angle. According to simple geometry, the height of this collar dictates the angle of light acceptance and so a range of angles can be accommodated as required.

To avoid errors and minimise internal reflectance through the collar's collimator, the hole is coarsely threaded. The sensor is calibrated with and without the collar in place to give our usual calibration traceable to UK National Standards. Both calibration factors are given on the Calibration Certificate.

The above photograph and diagram show examples for 1-channel sensors such as the PAR sensor, and the SKR 110 Red / Far-red sensor which also has a single point light entry. For the SKR 1800 and 1850 2 and 4-channel sensors, please see the separate datasheet as these collars have a different construction.

ORDERING INFORMATION

SKL 135/ Collimating Collar for 1-channel sensor (where is the angle acceptance required)

SKYE INSTRUMENTS LTD

21, Ddole Enterprise Park, Llandrindod Wells, Powys, LD1 6DF, UK Tel: +44(0)1597 824811 Fax: +44(0)1597 824812 Email: skyemail@skyeinstruments.com Web: www.skyeinstruments.com

